1,282 research outputs found

    Propensity Evidence Under Rule 413: The Need for Balance

    Get PDF

    The Conditional Lucas & Kanade Algorithm

    Full text link
    The Lucas & Kanade (LK) algorithm is the method of choice for efficient dense image and object alignment. The approach is efficient as it attempts to model the connection between appearance and geometric displacement through a linear relationship that assumes independence across pixel coordinates. A drawback of the approach, however, is its generative nature. Specifically, its performance is tightly coupled with how well the linear model can synthesize appearance from geometric displacement, even though the alignment task itself is associated with the inverse problem. In this paper, we present a new approach, referred to as the Conditional LK algorithm, which: (i) directly learns linear models that predict geometric displacement as a function of appearance, and (ii) employs a novel strategy for ensuring that the generative pixel independence assumption can still be taken advantage of. We demonstrate that our approach exhibits superior performance to classical generative forms of the LK algorithm. Furthermore, we demonstrate its comparable performance to state-of-the-art methods such as the Supervised Descent Method with substantially less training examples, as well as the unique ability to "swap" geometric warp functions without having to retrain from scratch. Finally, from a theoretical perspective, our approach hints at possible redundancies that exist in current state-of-the-art methods for alignment that could be leveraged in vision systems of the future.Comment: 17 pages, 11 figure

    MinMax Radon Barcodes for Medical Image Retrieval

    Full text link
    Content-based medical image retrieval can support diagnostic decisions by clinical experts. Examining similar images may provide clues to the expert to remove uncertainties in his/her final diagnosis. Beyond conventional feature descriptors, binary features in different ways have been recently proposed to encode the image content. A recent proposal is "Radon barcodes" that employ binarized Radon projections to tag/annotate medical images with content-based binary vectors, called barcodes. In this paper, MinMax Radon barcodes are introduced which are superior to "local thresholding" scheme suggested in the literature. Using IRMA dataset with 14,410 x-ray images from 193 different classes, the advantage of using MinMax Radon barcodes over \emph{thresholded} Radon barcodes are demonstrated. The retrieval error for direct search drops by more than 15\%. As well, SURF, as a well-established non-binary approach, and BRISK, as a recent binary method are examined to compare their results with MinMax Radon barcodes when retrieving images from IRMA dataset. The results demonstrate that MinMax Radon barcodes are faster and more accurate when applied on IRMA images.Comment: To appear in proceedings of the 12th International Symposium on Visual Computing, December 12-14, 2016, Las Vegas, Nevada, US

    Nerve Detection in Ultrasound Images Using Median Gabor Binary Pattern

    Get PDF
    International audienceUltrasound in regional anesthesia (RA) has increased in pop-ularity over the last years. The nerve localization presents a key step for RA practice, it is therefore valuable to develop a tool able to facilitate this practice. The nerve detection in the ultrasound images is a challeng-ing task, since the noise and other artifacts corrupt the visual properties of such kind of tissue. In this paper we propose a new method to address this problem. The proposed technique operates in two steps. As the me-dian nerve belongs to a hyperechoic region, the first step consists in the segmentation of this type of region using the k-means algorithm. The second step is more critical; it deals with nerve structure detection in noisy data. For that purpose, a new descriptor is developed. It combines tow methods median binary pattern (MBP) and Gabor filter to obtain the median Gabor binary pattern (MGBP). The method was tested on 173 ultrasound images of the median nerve obtained from three patients. The results showed that the proposed approach achieves better accuracy than the original MBP, Gabor descriptor and other popular descriptors

    Multimodal Fake News Detection with Textual, Visual and Semantic Information

    Full text link
    [EN] Recent years have seen a rapid growth in the number of fake news that are posted online. Fake news detection is very challenging since they are usually created to contain a mixture of false and real information and images that have been manipulated that confuses the readers. In this paper, we propose a multimodal system with the aim to di erentiate between fake and real posts. Our system is based on a neural network and combines textual, visual and semantic information. The textual information is extracted from the content of the post, the visual one from the image that is associated with the post and the semantic refers to the similarity between the image and the text of the post. We conduct our experiments on three standard real world collections and we show the importance of those features on detecting fake news.Anastasia Giachanou is supported by the SNSF Early Postdoc Mobility grant under the project Early Fake News Detection on Social Media, Switzerland (P2TIP2 181441). Guobiao Zhang is funded by China Scholarship Council (CSC) from the Ministry of Education of P.R. China. The work of Paolo Rosso is partially funded by the Spanish MICINN under the research project MISMIS-FAKEnHATE on Misinformation and Miscommunication in social media: FAKE news and HATE speech (PGC2018-096212-B-C31)Giachanou, A.; Zhang, G.; Rosso, P. (2020). Multimodal Fake News Detection with Textual, Visual and Semantic Information. Springer. 30-38. https://doi.org/10.1007/978-3-030-58323-1_3S3038Boididou, C., et al.: Verifying multimedia use at MediaEval 2015. In: MediaEval 2015 Workshop, pp. 235–237 (2015)Castillo, C., Mendoza, M., Poblete, B.: Information credibility on Twitter. In: WWW 2011, pp. 675–684 (2011)Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR 2017, pp. 1251–1258 (2017)Davidson, T., Warmsley, D., Macy, M., Weber, I.: Automated hate speech detection and the problem of offensive language. In: ICWSM 2017 (2017)Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009, pp. 248–255 (2009)Ghanem, B., Rosso, P., Rangel, F.: An emotional analysis of false information in social media and news articles. ACM Trans. Internet Technol. (TOIT) 20(2), 1–18 (2020)Giachanou, A., Gonzalo, J., Mele, I., Crestani, F.: Sentiment propagation for predicting reputation polarity. In: Jose, J.M., et al. (eds.) ECIR 2017. LNCS, vol. 10193, pp. 226–238. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56608-5_18Giachanou, A., Ríssola, E.A., Ghanem, B., Crestani, F., Rosso, P.: The role of personality and linguistic patterns in discriminating between fake news spreaders and fact checkers. In: Métais, E., Meziane, F., Horacek, H., Cimiano, P. (eds.) NLDB 2020. LNCS, vol. 12089, pp. 181–192. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51310-8_17Giachanou, A., Rosso, P., Crestani, F.: Leveraging emotional signals for credibility detection. In: SIGIR 2019, pp. 877–880 (2019)He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR 2016, pp. 770–778 (2016)Huang, D., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local binary patterns and its application to facial image analysis: a survey. IEEE Trans. Syst. Man Cybern. Part C 41(6), 765–781 (2011)Khattar, D., Goud, J.S., Gupta, M., Varma, V.: MVAE: multimodal variational autoencoder for fake news detection. In: WWW 2019, pp. 2915–2921 (2019)Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)Popat, K., Mukherjee, S., Yates, A., Weikum, G.: DeClarE: debunking fake news and false claims using evidence-aware deep learning. In: EMNLP 2018, pp. 22–32 (2018)Rashkin, H., Choi, E., Jang, J.Y., Volkova, S., Choi, Y.: Truth of varying shades: analyzing language in fake news and political fact-checking. In: EMNLP 2017, pp. 2931–2937 (2017)Shu, K., Wang, S., Liu, H.: Understanding user profiles on social media for fake news detection. In: MIPR 2018, pp. 430–435 (2018)Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: FakeNewsNet: a data repository with news content, social context and spatialtemporal information for studying fake news on social media. arXiv:1809.01286 (2018)Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR 2016, pp. 2818–2826 (2016)Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29(1), 24–54 (2010)Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)Wang, Y., et al.: EANN: event adversarial neural networks for multi-modal fake news detection. In: KDD 2018, pp. 849–857 (2018)Zhao, Z., et al.: An image-text consistency driven multimodal sentiment analysis approach for social media. Inf. Process. Manag. 56(6), 102097 (2019)Zlatkova, D., Nakov, P., Koychev, I.: Fact-checking meets fauxtography: verifying claims about images. In: EMNLP-IJCNLP 2019, pp. 2099–2108 (2019

    A study of 15N14N isotopic exchange over cobalt molybdenum nitrides

    Get PDF
    The 14N/15N isotopic exchange pathways over Co3Mo3N, a material of interest as an ammonia synthesis catalyst and for the development of nitrogen transfer reactions, have been investigated. Both the homomolecular and heterolytic exchange processes have been studied, and it has been shown that lattice nitrogen species are exchangeable. The exchange behavior was found to be a strong function of pretreatment with ca. 25% of lattice N atoms being exchanged after 40 min at 600 °C after N2 pretreatment at 700 °C compared to only 6% following similar Ar pretreatment. This observation, for which the potential contribution of adsorbed N species can be discounted, is significant in terms of the application of this material. In the case of the Co6Mo6N phase, regeneration to Co3Mo3N under 15N2 at 600 °C occurs concurrently with 14N15N formation. These observations demonstrate the reactivity of nitrogen in the Co–Mo–N system to be a strong function of pretreatment and worthy of further consideration

    Virtual Reality Sickness Reduces Attention During Immersive Experiences

    Full text link
    In this paper, we show that Virtual Reality (VR) sickness is associated with a reduction in attention, which was detected with the P3b Event-Related Potential (ERP) component from electroencephalography (EEG) measurements collected in a dual-task paradigm. We hypothesized that sickness symptoms such as nausea, eyestrain, and fatigue would reduce the users' capacity to pay attention to tasks completed in a virtual environment, and that this reduction in attention would be dynamically reflected in a decrease of the P3b amplitude while VR sickness was experienced. In a user study, participants were taken on a tour through a museum in VR along paths with varying amounts of rotation, shown previously to cause different levels of VR sickness. While paying attention to the virtual museum (the primary task), participants were asked to silently count tones of a different frequency (the secondary task). Control measurements for comparison against the VR sickness conditions were taken when the users were not wearing the Head-Mounted Display (HMD) and while they were immersed in VR but not moving through the environment. This exploratory study shows, across multiple analyses, that the effect mean amplitude of the P3b collected during the task is associated with both sickness severity measured after the task with a questionnaire (SSQ) and with the number of counting errors on the secondary task. Thus, VR sickness may impair attention and task performance, and these changes in attention can be tracked with ERP measures as they happen, without asking participants to assess their sickness symptoms in the moment

    How to stop disproportionation of a hydrochloride salt of a very weakly basic compound in a non-clinical suspension formulation

    Get PDF
    Our objectives were to stabilize a non-clinical suspension for use in toxicological studies and to develop methods to investigate the stability of the formulation in terms of salt disproportionation. The compound under research was a hydrochloride salt of a practically insoluble discovery compound ODM-203. The first of the three formulation approaches was a suspension prepared and stored at room temperature. The second formulation was stabilized by pH adjustment. In the third approach cooling was used to prevent salt disproportionation. 5 mg/mL aqueous suspension consisting of 20 mg/mL PVP/VA and 5 mg/mL Tween 80 was prepared for each of the approaches. The polymer was used as precipitation inhibitor to provide prolonged supersaturation while Tween 80 was used to enhance dissolution and homogeneity of the suspension. The consequences of salt disproportionation were studied by a small-scale in vitro dissolution method and by an in vivo pharmacokinetic study in rats. Our results show that disproportionation was successfully suppressed by applying cooling of the suspension in an ice bath at 2-8 degrees C. This procedure enabled us to proceed to the toxicological studies in rats. The in vivo study results obtained for the practically insoluble compound showed adequate exposures with acceptable variation at each dose level.Peer reviewe

    Recognising facial expressions in video sequences

    Full text link
    We introduce a system that processes a sequence of images of a front-facing human face and recognises a set of facial expressions. We use an efficient appearance-based face tracker to locate the face in the image sequence and estimate the deformation of its non-rigid components. The tracker works in real-time. It is robust to strong illumination changes and factors out changes in appearance caused by illumination from changes due to face deformation. We adopt a model-based approach for facial expression recognition. In our model, an image of a face is represented by a point in a deformation space. The variability of the classes of images associated to facial expressions are represented by a set of samples which model a low-dimensional manifold in the space of deformations. We introduce a probabilistic procedure based on a nearest-neighbour approach to combine the information provided by the incoming image sequence with the prior information stored in the expression manifold in order to compute a posterior probability associated to a facial expression. In the experiments conducted we show that this system is able to work in an unconstrained environment with strong changes in illumination and face location. It achieves an 89\% recognition rate in a set of 333 sequences from the Cohn-Kanade data base
    corecore